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Tom 25, No.2, pp 44-58
Moskva, 1948. A.N, Deych **

SUMMARY

In this article formulas (3) are derived for determining
the position of a celestial object on the basis of two reference
stars given by equatorial coordinates. 1In this connection,
second-order terms are taken into account which are derived
for a 5° x 5° field with an error not greater than 1 sec.
Analysis of third-order terms shows that such terms can be dis-
carded for the same limitations and for declinations not greater
than 60°. If the object being determined is located close to
the optical center the precision of formulas (3) is increased
tenfold.

The method described here can be easily extended to the
case of three reference stars [formulas (4)] whereupon in this
case all terms with the coefficient b, vanish, which may signi-
ficantly increase the precision of determination of object's
position. Tables are given at the end of the paper for a rapid
accounting of second-order terms.

Numerous methods are known for determining the position of
a celestial object on a photographic plate with the aid of two
reference stars, for example, the methods proposed by Wolf,
Reger, Kaiser, Blazhko, Fick, Arend, etc., These methods are
based on isolated particular considerations which are not connec-
ted with the general theory of photographic determination of
celestial coordinates. At the same time, the conditions limiting
to a greater or lesser extent the practical application of the
method are usually not clearly defined. The simplicity of the
formulas and computation approaches also leaves much to be de51red
At the same time, a tying to two or three stars is important in
determining the position of small planets and comets when high

** Transliteration of "Deutsch".



precision is often not required but when it is important to
curtail the time needed for measurements and plate processing.
In this con:=2ction, we must remember that a rational use of
even two reference stars can often allow us to determine the
position of an object just as effectively as with classical
methods utilizing a large number of stars.

In the well-known Schlesinger method [1] the position of
the celestial object is determined with the aid of three reference
stars. It may be shown {see, for example, our note [2]) that
Schlesinger's method stems from Turner's method of six constants.
In 1933, Arend [3] developed the Schlesinger's method of depen-
dences in its application to two reference stars. We will show
that Arend's formulas result from the classical method of four
constants. We shall further derive more convenient and exact
formulas for obtaining o and § of the object directly from
equatorial coordinates of reference stars. We shall calculate
the effect exerted by third-order terms in the cases of remote
position of the object from the optical center. Finally, we
shall extend our method to the case of three reference stars
and we shall present a simple method for determining the "depen-
dences".

As is well known, in the four-constant method the ideal
coordinates are linked with the measured coordinates by a linear
dependence but, at the same time, the coordinates are rectan-
gular and the scale is the same in all directions. Therefore,
we must first consider the nonorthogonal terms of differential
refraction.

Let us assume that there are two reference stars and that
object to be determined is located between these stars. Then,
on the basis of the four-constant method we may write:

ax,-+ by, +e=X,, ay,—bx,+d=Y,,
ax,+by,+c=x,, ay,—br,+d=Y,, (1)
az,+ by, -+ c=Xo ay,—bra+d=Y,,

where x;, yj are the measured coordinates, Xj, Yj are the ideal
coordinates, and a, b, ¢, d are the four unknown plate constants.
The third line refers to the object to be determined. Let us
subtract the first lines from the second lines:

\

a(z,—7)+0b (y,—u)=X,— Xy,

o , 2
“(yﬂ“-yn)—'b(xl"‘xx)":l/t_)l‘ (

After introducing evident denotations, we have .



adz +4- by =-AX,
ady —bix =AY,

from which we find

a= AY Az -|-AY Ay _AY Ay— AY Ax

RV C

Let us now subtract the first line from the third line of
Egs.(1):

X,;—X,=a(@,—x)+b (yo—y,) = adz, + bAy,,

Y, —Y, =aly,—¥)— b (r,—2,) = ady, — bdz,.

Let us substitute into these expressions the found values of
a and b and let us factor out AX and Ay:

X,—X,=a,AX 4 b,4Y,
, Y,—Y,=a,AY — b AX,
where : )

Az Az, 4 Ay Ay, 2
R CERE (2)
and
b AylQx, —Ar Ay,
1T T A Ay !

According to Schlesinger coefficients a and b can be called
"dependence ". They depend only on the measured coordinates.

With respect to the second reference star we can write
analogously

X, —X,=a,AX + b,AY.
Y,—Y,=a,AY —bAX,

where

_Arlr, Ay Ay,
= Tawyay

and b, = By A7, =25 dy,
T A Ay

whereby Ax, = x,-x, and Ay, = y,-Y,. We can establish once

and for all the numbering order of the stars so that z,>2,>72,.
In this case, for the other coordinate we will have either

Y. > Y, >y, or Y. <% <)i. Consequently, a, and a, are always posi-
tive. It may be easily seen that

a1+0;=1 i b1+ba':"'0‘



In practice, a, is usually close to 1/2 and b, is smaller than
0.1. Coefficients a, and b, (a, and b,) have an important geo-
metric significance which willhbe utilized later. Arend (loc.

cit.) has pointed out thata =~ ; h=?§'. In Fig.l the segment
8,8, =l VAT Ay, Points S, ané S, are the reference stars.

Point A represents the object to be determined. Line segment
AB = p|S,5,, and line segment BS, = m.

To provide demonstration let us represent

3 A Ay 1 Av . Ar
a, =y (Ax, -—; + 4y, ~l‘l> n b, = - (Ax, T — Ay, 'T) .

The ratios 3% and 3! are the cosine and sine of the angle for-

med by the dtraight! 1ine s S, with the axis x. The expressions
in parentheses are therefore the projections of Ax; and Ay; onto
the straight line S;S, and onto the line AB perpendicular to the
former. The sum of these projections yields respectively the
line segments BS, = m and AB = p. By making use of this geo-
metric interpretation, the calculation of coefficients a, and
b, can be greatly simplified by orienting the plate in the mea-
suring instruments in such a way that the straight line S, S,
coincide with the axis x. Then, after measuring the coordinates
of points S,, A and S, we shall obtain the differences m and 1
and their ratio a;. The line segment AB can be measured by
means of a perpendicular screw, if one is available, or plate
rotation by 90°. 1In order that the error of the coordinate be
smaller than 0.1 min, it is necessary to obtain in the measuring
instrument two mutually perpendicular directions with an error
not greater than 1 min. Indeed, we have seen that e¢=2,whence
da=-9". However, dm = ptgi, where i is the slope angle of the

¢ axes. If we postulate !=1°=60" and
b, « 0.1, we have p = 5 min. Assuming
i =1 min, we obtain dnua 0.0015 min,
hence da = 0.000025. Considering that
AX or AY are not greater than 1° = 3600
sec, we will obtain according to formulas
(2) an error in the coordinate smaller
than 0.1 sec.

ey

- . o - -

Formulas (2) are exact to the same

e 1, g, extent as formulas (1). TIf the object
is located on the straight line connecting
Fig.1l. both reference stars, then b, = 0. The

reservation concerning the accounting of
nonorthogonal terms of refraction can then be disregarded, and
the accuracy of formulas (2) is just as good as the one obtained
by the six-constant method. In other words in this case the
third star becomes superﬂuous, of which one can be easily con-
vinced by applying the Schlesinger's method of "dependences".



In the general case, the course of our problem's solution
is as follows.

Knowing the optical center of the plate, we calculate by
the equatorial coordinates of the reference stars the ideal co-
ordinates of stars Xj and Y;. According to the measured coor
dinates of stars and of the object, we calculate the coefficients
a, and b,. We obtain the ideal coordinates of the object X,
Y, from formulas (2), and from these coordinates we obtain the
equatorial coordinates a, and §,. When utilizing the photogra-
phic catalogs of the "Sky Chart", it is possible to apply formu-
las (2) directly to the rectangular coordinates of reference
stars listed in these catalogs. 1In this case the choice of
stars is considerably increased since the positions of stars up
to the 12th visible magnitude are given in the photographic cata-
logs. We shall thus obtain the rectangular coordinates of the
object in the "Sky Chart" plate system, and afterwards we shall
calculate the ideal coordinates with the aid of constants of this
plate and, finally, the equatorial coordinates of the object
sought for. At the same time we should remember that an addi-
tional source of errors arises from the non coincidence of the
optical centers of our plate and of the "Sky Chart" plate.
Schlesinger (loc.cit, p 78) notes that for a difference of 1°
between the optical centers of the plates the error in the
position of the object will be less than 0.5 sec.

However, the field covered in the sky can be much larger
than the area of the plate of a normal astrograph (4 square de-
grees). For example, the plate of a zonal astrograph covers an
area of 25 square degrees. The object may be located far away
from the optical center and then the suitable plate of the "Sky
Chart" with reference stars will have an inclination to our
plate greater than 1°, which may lead to an error in the position
of the object greater than 1 sec. It should also be noted that
the use of photographic catalogs generally is a rather complex
matter in view of diversified forms of publication of such cata-
logs by different observatories. 1In addition, s@ far the sys-
tem of stellar positions has not been defined in these catalogs.

For this reason, we believe that it is important to derive
formulas which will make it possible to obtain a, and 8§, of the
object directly from the equatorial coordinates of reference
stars. For this purpose expansions in series are used, in which
in order that the problem does not lose its practical importance
it makes no sense to utilize terms above the second order. Fur-
ther in this article we shall list those limiting conditions
which permit us to discard third-order terms while still retaining
the required precision.

Let us use thce formulas proposed by A. K&nig [4] for the
expansion in series up to and including third-order terms:



X = (&~ A) cos D—(a— A) (D) sin D -} & (¢ — A)?* cos 1) (3 cos? D-—1),

| Y= (3~ D)4 5 (@~ 4) sinDeos D -t 5 (@ A)* (4 — D) cos 2D |- - (5 — D'

Let us substitute these expressions into formulas (2) instead
of coordinates Xor X,y X, and Y, Y,, Y,:

Xo"“Xlzzal (Xs”Xl)+bl (Yi-'yl)’

Yo"’yl =a, (Yz"‘Yx)'—bl (XZ—XI)‘

Then, we obtain
1 o, — %, =a,(2,—a)-}b (5, —2)scc D4
+K%—AH%~D%ﬂ%~AK%—D%4A%~AM%—DH-
- a, (o= A) (5 — DY) e D - 5[ (2 — A)'— (o, — AY] sin D4

gL, (g — AY=a, (35— AY — (5= A)* - (o, — 4)°) (Beos* D —1)

34 2 [(2y — A)‘1 (7, —D)y— (a', — A)* (5, — DY} cos 2D sec D -

2

4 % [ (32— D) — (3, — D) ] see D;

¢,— &, =a,(3,—8)—0b, (¢,—a,)cos D -}
4 ‘;— [a, (e, — A)* ——‘a, (o, — A — (g — AV |- (2, — AY*)sin Dcos D4
-+ b, [(2;— A2, — D) —(2,— A) (3, — D)} sin D 4-
Lo, (o — 4 3, D) 0, (2, — A)? (3,— D) —
—(ug— Ay (3, — D)+ (2, — A4)' (3, — D)) cos 2D |-
5 [0, (3,— DY =~ @, (3, ~ DY~ (3— Dy + (b, — D)}~

— !’6!. [(y — A) — (2, — A)’) cos D (3 cos* D —1).

In these formulas, the differences between right ascensions
and declinations are expressed in radians.

Let us start with an estimate of third-order terms in the
first equation. The bracket in the first such term with the
coefficient 1 (3 cos?D -1) can be represented as follows (remem-

bering that a; + a, = 1):

[a, (2, — A +a, (o, — A) — (&, — 4)'] =
=a, [(72——/1)3—(0‘0'_/1)3] 'l‘ a, [(ax""A)“m(zo_‘A)al =
=a, (al'_“ao).i(aa-‘f“)"%' (‘12'—'“‘) (‘:o ‘A‘) + (ao'—'-/!)!}'_'

—a, (10“"‘“1) [(al—‘A)“*' (al"' A) (ao—A) + (ao'—"‘):]



Let us substitute here:
ay—a, =a, (2,—a,) -} b, (3,—8,) sec D,

@, — &, = a, (,—2,) +- b, (%, — &,) scc D.

Then, we obtain:
a,a, (x,—a,) [(a,— A)*— (a2, — 4)* -+ (2g—A) (0, —a,)]—
—b, (8,—38,)sec D {a, (x,—A)—a, (2,— A)* +a, (a,— ) (% — A)+
+a, (%, — A) (ao—_A) -+ (al'_‘A)"'*' (ao"A)E] =
= a,a, (2,—2,) [(@s—2)) (22t 2,—24) 4 (2,— 4) (x,—a,)]—
—b, (3,——8,) see D la, (@y—2,) (=, + a,—2A4) -} (2,— A4) (a2, + an,—A)+
+ (2, —A)* + (2,— 4)'].

Disregarding the term with b%, we may postulate a,x,+ a2, =%, = o, .
Then:

a,a, (24—2,)*(z, + o, 4 0,—34)—b, (3,—¢,) scc D[a, (a,—a,) X

X (o, 40, —2A4) -2 (2, — A)* + (2, — A)’] =
= 3a,a, (2,—a,)* (3@%.1‘:;35?_0, — A) _

—b, () sce D [ —a) 2 (-~ 4) 42 (ao»'—A)z + o — 4] -

Assuming in term b, approximately 2%21= a, + We obtain:

O A -~ A) = b, (3,—8,) sec D [2(2,— ) (2,— 4) +
+ (o, —A)]-

For the numerical tabulation of these terms, taking the
coefficient % (3 cos?D -1) into account, we can write the fol-
lowing expression:

- 0,8, (2,—2,)* (x—A) (3 cos* D—1) —

=) e

b, (33—8;) (@—A)?sec D (3 cos’D—1).

vo!

By the difference (a-A) we imply the order of the mean value
of the differences (a, - A), (a, - A) and (a, - A).

The factor (3 cos?D -1) varies from 2 to 1 as D varies from
0° to 90°. The difference (a; - o,) is seldom greater than 1°
or 3600 sec. If at higher declinations this difference is twice
as great, the factor (3 c s?D -1) then becomes twice as small.
The coefficient ; a,a, < ;. Thus, if we want the term
‘éamghf—ad’@f—AH3co§D-—1)t° be smaller than 1 sec, it is necessary

that
(36007)* (a— 1) - 2 Y
si(zoszct T 1
whence (o - A) € 3°30 min. In case an error < 0.1 sec is allowed,

(o - A) must be < 20°'.



We shall examine the term with b1 together with the fol-
lowing third-order term of our expansion. The bracket of this
term can be represented in the form:

(o, — A) (?':"‘ax'*‘al“‘]))'_(an”‘/i): (61_‘])) =
= [(aa - A): - (al - A),] (61 - D) -I- (az - A)2 (a: — 3,) =
= (2, — a,){a, + &, —24) (3, — DYy} (2, — A)* (e, — &) =
=2(m,—a) (352~ 4) (= D)+ (1 — AP (32
By substituting we finally obtain:
b, c0s 2D sec D (o, — ) (2, — 4) (3, — D) 4

+ 24 (2eos® D—1) see D (x,— 4) (3,—5,).

The second term in this expression will be partially reduced
with the corresponding term of the previous expansion, so that
there remains:

— .!’21_ (3,~23,) (a —d)?*cos D.

The coefficient of the first term cos?D sec D varies from 1 to 0

as D varies from 0° to 45° and from 0 to - 1 as D varies from

45° to 60°. Assuming b, < 0.1 we may see that in order that

the whole term be < 1 sec (o, - A) and (61 - D) should not be
greater than 3°. Declinations > 60° will give a greater error.

In regard to the last third-order term in the expansion of Q, = Oy,
we can easily see from the tables proposed by Koenig (loc.cit.p 545)
for third-order differences between the arc and tangent that for
D < 60° this term will be < 1 sec when (8§ - D) < 3°30 min.

Thus, we may conclude that the influence exerted by third-
order term generally will not be greater than 1 sec if the object
is not located further than 2°5 from the optical center. The
error will not exceed 0.1 sec if the object is close to the op-
tical center. If the reference stars are located close to the
object being determined and if, in addition, b, is very small,
then the influence exerted by third-order terms becomes even
lesser.

It may be shown by means of similar transformations of
third-order terms in the expansion of §, - §, that these terms
too will not exceed 1 sec on a 5° x 5° plate and 0.1 sec in a
30" x 30' area around the optical center so long as the distance
between the reference stars is not greater than 1°, b, < 0.1 and
D « 60°,

Let us now analyze the second-order terms. Let us rewrite
the bracket around the first such term in the expansion of
ag - o, as follows:




[(ao_A) (30-—-0)'—(11 (as’_‘A) (63—]})_02 (al'-—‘4) (ax"‘D)] =
=[(x,—A) (é°~D)—a‘ (ay—a, -1 2y— A) (33— 38y 4 §,— D) —
—a, (2,— 2, + %"—A) (61—60_0)] =a, [(“o“"“:) (ax_D) +
1 ('70 - '}l) (’o'—'A)] —a, [(’1,——:10) ('7,——1)) + (62_60) (‘10 - ‘1)]

Let us substitute here:

g2, == @, (og—2,) - b, (3,—3,) see 1),
8o 8, == @, (8,—8,)—b, (2,—a,) cos D,
o, — 0, = a, (a,—0,) 4 b, (3,—a,) sce D,

8,— 8, = a, (8,—¢,)—b, (0,—a,) cos D.
Then, we obtain:

—a,a, (2,—a,) (3,—3,) -+ b, (3,—3,) sec D (a,3, + a,3,— D) —
—b, (a;—a,)cos D (a,— A).

The second second-order term at sin D can be transformed as
follows:

a, 4-a,

% (“z'—al) (az+al—'—q‘4):bl (a’_a‘) 2 ——A> )

If both these second-order terms are combined and the coeffi-
cients tgD and sin D are taken into consideration, we obtain:

—a,4q, (a,—~a,) (82-——-6,) Lg D“}' b, (')z"":x) [61 +a, (63"‘*3,)—'—D] sec D tg D+
+ b, (7,—a)) (?——.;i-— a,) sin D,

The first term with b, acquires substantial value when the
object is located far away from the optical center along the
declination and at the same time at large declinations.

The second term with b, can be transformed as follows:

by (x,—a)) [(i’—ﬁ"):-(f"-:‘-‘l ] sinD =

9
4

= b, (2, —2,)* 2 sin D—b} (2,—2,) (3,—3,) tg D.

Therefore, this term can be disregarded when a, is close to a,,
i.e. when the object is close to the middle point between the
reference stars. Let us consider the second-order terms in the
expansion of 6§, - §,. The first such term can be rewritten as
follows, omitting for the time being the factor % sin D cos D:

[, — Ay —(a,— A)] =

ANT L
LY RS B PR A

‘1

=d, (ax'—'ao) (“1 + o(a—?“"l) +a, (az_ao) (“: + ao'-'zA)'

rs AND A
Qg |\&— 41y \ %y 4
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Let us substitute, as earlier:
og—a, =, (xy—0,)-}- b, (6,—3¢,) sec D,
0, —o, = a, (e, —x,) + b, (6,—3,) sec D.

Then, we obtain:
@,a, (o, —a,)*—b, (3,—3,) scc D (2,2, -+ a,%, + o, — 24).

Let us now examine the following second-order term, omitting
for the time geing the factor b, sin D. The bracket can be
represented as follows:

[(a,-——a, + “x—‘A) (’72_61 +é&— D)'—(ax - A) (‘31 — D)l =
= (a, — ) (3, ~ D) (2, — A) (3, — 3,).

Taking into account the previously omitted factors and
examining together both terms with b, we obtain:

bysin D {(n, — o)) (3, -- D) - (2, — A) (3, —3,) — (3, -- 8,) (&, — A)] =
=b,sin) [(xg —2,) (6, — 'D) 4 (33— 8,) (=, "‘ao)] == bx sin D [(a, — o) (3, — D)\
— (g —38,) a, (2, —a,)] = b, sin D (a, — a,) |8, —a, (3, —¢,)—D].

Thus, the second-order terms for 6, - &, will be:

T 0,0, (3, — a,)* sin 2D 4 b, (o — ) [3, — a, (3, — 3,) — D] sin D.

In our transformations we omitted the terms with b?. In a
second-order term, when «,— «,: b,(0,—a,)*2""sinD the factor %:—a
usually does not exceed 0.15. Therefore, we will also omit 2
this term. Thus, finally, we can write the following formulas,

which are suitable for practical application:

Xy =0a, + a, ia: - al)s + bx (62""61)” 50:5])___ 2,a, (az - al)s (62 - 61)” t'g Dsint” +
s D . A
+ b, (3, —9,) [, + 0,(8,— 8,) — D} "~ tg Dsin 17;
By== 8,48, (3, —8,)" — b, (%, — ,)* 15%05 D - (3)

+ —:« a,a,(x,—«,)"sin 2D 15*sin 1"

+b, (2, —«,)*[8,—a, (8, —3,) —D]15cos Dtg Dsinl"s
Tables have been compiled to facilitate the calculation of
second-order terms. The first table gives the term:
0.25 (an —a,)* (‘3: - 51)” sin1”,
The auxiliary table gives the factor gg%. The second table

gives the term:
-:—' 0.25 (2, —@,)2ssin 2D 15*sin 17,
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The third table gives second-order terms with b, with respect
to the arguments: ‘

bl (6‘,-—- 61) Fc‘cs_D_ and l(?‘ -+ a:(az"‘al)'—D]
or '

b, (a’-—a,)15COSD and (6, —a,(3,—38,)—D].

The values given in the tables should then be multiplied by

tgD. Before we undertake the solution of an example based on
formulas (3) we wish to say a few words about the influence
exerted by nonorthogonal refraction terms, not accounted for

in the original formula (1). According to K¥nig's formulas loc.
cit. p.530) these terms have the form of corrections made on

the measured coordinates, whereupon here one may assume the
origin of coordinates to be located not necessarily in the opti-
cal center but, for example, in the first reference star:

correction for x

F 23425 (L R ETA
(B4 28 (4 + Ky KD 663 — k),

correction for y

AUXILIARY TABLE

(l‘-‘(l._, ‘11’”;
o 0,350 N 0.250°
0.500 0.500 1.000 0. 400 0.0.00 0.960
0.490 0.510 1.000 0.590 0.610 0.95¢
0.480 0.520 0.998 0. 380 0.620 0.942
0.470 0.040 0.99% 0.370 0.130 0.932
0.460 0.540 0.9 0.300 0.740 0.092
0.450 0.530 0.990 0.350 0.650 0.910
0,440 0.460 0.986 0.340 0.660 0.898
0,430 0.570 0.950 0.430 0.670 0.88h
0.420 0.580 0.974 0.320 0.680 0.870
0.410 0.5% 0.968 0.310 0.690 0.856
a,-a, a,-a, .al_.gl
o 0.950 & 0,250 a 0.250
0.200 | 0.700 | 0.975 | 0.200 | 0.500 | o0.ca0 | o.100 | 0.900 | 0.260
0900 | 0.710 | 0.82% | 0,490 | 0.810 | 0.615
0.980 | 0.720 | o.806 | 0.180 | 0.820 | 0.590
0.9750 | 0.730 | 0.788 | 0.170 | 0.830 | 0.504
0.200 | 0.740 | 0.750 | o0.1c0 | 0.8%0 | 0.538
.20 | 0.750 | 0.750 | 0.150 | 0.850 | 0.510
0990 | 0.960 | 0.730 | 0.140 | 0.8°0 | 0.470
0.230 | 0.7;0 | 0.508 | 0.130 | 0.87 0.452
0.9:0 | 0.780 | o.e86 | 0.120 | 0.850 | 0.422
0.210 | 0.790 | 0.63% | 0.1iy | 0.5%0 | ©.952
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where the quantities k, and k, are determined from the corres-
ponding parallactic triangle and B and 8 are constant refrac-
tions. Under Ay; we imply y, y, = Ay or y, - y; = by,. 1In
order to get an idea of the numerical value of these corrections,
let us turn to Klistner's tables for the Bonn Observatory printed
in [5)}. From these tables we can see that corrections in large
hour angles and at zenith distances up to 75° amount to as much
as 0.0002 of the coordinate. The effect of this error on cons-
tants a, and b, can be found by differentiation of these cons-
tants with respect to 4x; and Ay,. In fact, if we denote by dx
and dy the corrections per coordinate unit (i.e. the coefficients
in front of Ayi, depending on 8, B', and k), we obtain:
da. —d ( Aziz -y ) - (\ydzdx 4 Az dz 4- 23y Ny dy) (Az* 4+ Ay?)
1 Ax? 4 Ayt (dz2 4 Az%)
_Qzzy 4 V)2V dydz 4 Aytdy)
(3z2 1 dye)® -
239 3zdy (x)y; —Aydzy) 4 Artdr (A2 )y, — Aydz) — Ay*dz (Az 3y —dydz,)
= - (Az? -+ 1y?)2 -
_ (AzAy, — Ay Ax) [2AyAz dy + \r?dz — Aytdx]) =—b

(A2t —Ay*)dz+-23zAydy |

(Az4-1y2)? 2 Azt Ayt 0
similarly, we obtain:
_p (A - Ay dy—2\zAydzx
dbl*“bx”““—jggtgjgy—~—‘-“~
TABLE 3
Second-order terms with b,
.*;T* LY ! ' Az 1
100 | 208 | 30° | 40¢ 10s | 205 | 905 | 400 105 } 208 | 305 | 400
¥ 3 o\l

|
2 | orol ognxl 0%p1] 07021 1°27) 0018 0:;6\ 0f3%) 0172) 2°27) 0736 0%71 }502 12
%0 ozt oal wos] e | o) Tun oot aan 4| henl .72 1.08) 144
Ol ol Tosl todl e tael sl lss| o7 e .39 7| 110 1.47
S BN I et 5ol Lo 37 74| 1.12) 1.49
s | o] Ceal o3| iof] 8] 200 el .59l w8 371 74| 1.42) 1.

; 2 : A 10 .a8) 76| 1.14] 1.51
‘o3l Conl .09 .12] 10] .e0f La) .6f] .82 38 .

1o | Cox lo7| ‘10| al 2] 21 a2 o.63) .eu) 12| .38 .79 1.5 1.5
Yo | lea| Cos| it lae] 1k} (23 a3 o5 BG) aw) .39 L7800 1.50

o1 ol loo oal oasl 36| 22| .asl ool s8] 161 .40p .79 £.19) 1.
13 o3l 100 -1l .2al a8 .23} a5} .6 Loip 48| .40 .80} 4.20) 1.0
Wl oel i sl 20| 23 el ool o8 20 Laf) .81} 1.2} 1.63
s | oo cral seel 2 ma) Taa las oz .o0) 22| Laf) .83 1.2¢ i.69
1 o) o lm| msoze| 2e| a9 .73 .08 2k .62 L84 1,200 1.08
% L08] .19 .23 .1‘0‘5 26 L2530 .50{ L7951 ’Ogi 26 .;3 .80 1"’"‘3 1.10
o | Ces) ctel | sl 28 26| Lst) Lozt .0z) 98t L3 BGH1.2901.72
a0 | .00l 18] .26 .33 301 .26/ .52 91001 30| LAk .SZ 1.31 1.77
o | e BB R e
RY 10l .20 .30) .40 h .2 500 .81 .10, ( NA . 34 1.79
el caol cm) cm| ezl 3| a8 lse stz 36 .46 L91)1.30, .82
RIS 1] .e2 L3330 4% 38 .29 .37 .8¢ji .‘I{ 38 A -0 . .84
3ol e oas el a0 |l oSl lsajac) 40| a7 0% 1.40{ 1.80
Lyl ey T3y oaey a2 .S0p .59 L8OV A%y A2y A7) 0% 1.42)1.89
pr [ B P 1 71 4 R I I R
AEEEERIEEE RN G
Dol gl oLmsi 4z .56 se .32 em 04 )48 A0 -47] 1.96
:; .}; .2(»i Jaa) .98 50 .32| .6 06|t .28t 50 [ .50 Ly 1.30 1.90
o4 150 Czol sl .60p 52| 331 .65 o811 .30 52| .50{ 1.00! 1.50; 2.00
0 0l ar) leo| e 5| .23 Lo t.00jl .33, 54} .51 1.01) 1.52) 2.03
B ] gl kel Tqal lexl s | ima| les| 1.01{t .m3y 50| .51} 1.02) 1.54] 2.05
015w st ces! sl o3l ool slomi szl s |5 1.06 1.55) 2,07
eon | agl lasl osel sef2c00 [ .35 .%o 1.051t .403°00( .52 1.05| 1.57] 2.10
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Thus, as was to be expected, these corrections vanish com-
pletely at b, = 0. If we assume as an example Ax = Ay, the
fractions are respectively transformed into dy and dx. Postu-
lating b, = 0.1 we obtain a maximum value for da, and db, of
the order 0.0002. When the distance between reference stars
is about 1° i.e. 3600 sec, we will obtain an error < 1 sec
even at very large zenithal distances.

As an example, we have chosen the determination of the
position of a star located between two reference stars whose
positions were borrowed by us from the photographic catalog
of Helsinki Observatory, Vol. VI, plate No.665, with the
optical center A = 15 45m 0$00 and D = +45°0070 (1900). Accor-
ding to the catalog the position of the star sought for is:

a, = 158 453578, 8, = -+ 45°%6'370.

The solution is:

o, = 15042m20349, 8, = - 44°25°2975,
a,=15 47 18.8S. 8= 4616 11. 9
o, —a, = + 458339 83— 8, = - 504274

= 14-298:39 = - 304274

2= -+ 6mM557, g = 1 6mmI83, ¢, = +0.7248,
z, = —28. 375, y,=—3h. 285, a,= - 0.2752,
z,= +24. 731, y.—= 4-16. 402, b, = —0.0702.
Zi—7, = £ 53406 = Az, 1,—y, = +50.687 =ay,
z,—x, = +34932=Az,, y,—u, = +40.4683=A4y,

o, 151 421 204 49, A 44252975,
a, (x, - &,) +3 36.27, a, (&,—8,) 4-306 45.1,
sec D

b, (6.——6:)% —20.08  _p (¢;—a,)15cos D + 342.2

15 45 36.68 -+ 45 5 56.8

second- second- 4.8
order term %9, =88 srder term’ 4% 4

" v bl — .01 " " - bl. +1./1

« 15045™ 35579 'R + 456370

From formulas (3) and also from analysis of third-order
terms we can see that terms with b; create additional diffi-
culties and errors. Therefore, it is advantageous to have b,=
= 0. This can be achieved with the aid of a third reference
star in the following manner. Let there be an object sought
for which is lo ated inside (and in exceptional cases also out-
side) the triangle formed by the three reference stars. Then,
after connecting one of the stars and the object sought, for by
a straight line, let us extend this line until it inte¥sects
the straight line connecting the other two reference stars.
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The point of intersection can be assumed as a fictitious star
whose coordinates we can determine from the two reference stars;
» in this case, it is evident that b; = 0.
-+ After calculating the equatorial coordi-
nates of the fictitious star, let us use
these coordinates for determining ao,, and
S0 of the object sought for, whereby in
this case b, is also equal to zero. Thus,
the process is broken down into using for-
mulas (3) twice, but without terms with b,.

r¥ e In order to find coefficients a, we
must determine the coordinates x and y of
-  Fig.2 the fictitious star. This can be done by

means of a calculation. Indeed, since b, =
= 0 in both cases, we obtain the following two conditions for
determining the coordinates x and y:

W —ya) (@ —2) — (2= 2) (Y — ¥a) = 0
(y—9) (@, —2,) — (& —2,) (4, — ¥2) =0,
whence
z (y, — ¥2) — U (Ta— ) = Talfs — YT
z(yo— 1) — ¥ (@o—22) = TYo — UiTor

From these two equations we can find x and y of the fictitious
star and then we calculate coefficients a,; with the aid of known
formulas. The problem of determining a, can be greatly simpli-
fied by measuring the plate in a special manner. Namely, after
orienting the plate in such a way that the straight line connec-
ting two reference stars coincide with the horizontal filament
({line) of the instrument, we measure the coordinates of all
reference stars and of the object sought for (Fig.2). The
fictitious star is denoted by the letter c.

Then, we rotate (turn) the plate in such a way that the
vertical filament (line) coincide with the selected pair of
stars, and we again measure all coordinates. From such tri-
angles we can see that

Ap Ad

6= e T A

The segments Ad and Aa are known from measurements. In order

Be  Ba+ - .
to find aq ué (ECE , we find the segment

’

—abda_2h
ac=4a dd= a, K

In the case of three stars and with such a method of
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measurement it is not necessary that the vertical motion be
necessarily perpendicular to the horizontal direction in
which the measurement scale is disposed, as was the case of
two reference stars. Thus, three reference stars give a
better precision with lesser limitations.

Therefore, the formulas used for calculating the coor-
dinates of the object sought for with the aid of three refe-
rence stars will be as follows:

0, =0, 4 a, (0 —a,)  —a,0, (2 —a,)* (3~ 5,)" tg Dsin 1",

where , .
a=a,-a, (a: —a,)— 0;02 (aa - aa)’ (63 - ai)n tg Dsint”,

: : (4)
So=0,+a, (§—3)+ —:- a,a, (& —a,)*s sin 2D 15 sin 17,

where . ,

b= 3,4 0 (35— 8,)" + - a;a} (2, — o) %sin 2D 157 sin 17,

Nonorthogonal refraction terms are also taken into account by
the very same formulas.

EXAMPLE. We shall resolve by means of our method the
example given in Schlesinger's article (loc. cit. p.84).

Given are the following three reference stars:
o, —15MW3Im30N1,  B,= —17°42'18",
‘a,=15 33 0.28, ~¢,=—17 2011.1,
a,=15 34 40.24, 3= —17 23 75.5.
Measurements gave:

z, = —T11.537, y,=+ 18.453,
z,= —31. 744, y,= +53.408,
z,= 0.000, y,=  0.000,
z, = — 43.396,y, = - 30.200.

Coordinates of the point of intersection (of the fictitious
star) will be found analytically. We obtain:

z = —26.374,
y= +437.319.

Hence we find the coefficients:
a, =0.62310, a; = 0.30124.
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From formulas (4) we obtain the coordinates of the fictitious
star:

o = 15h 33m 30133, & = —17°30°2177,
and finally, the coordinates of the object sought for:

&, =150 32m 45°16, &, = —17° 34 53,

These values are in precise agreement with Schlesinger's
data.

Pul'kovo Observatory
10 February, 1947.

* % * THE END * % %
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